
1

Normalized Systems

Re-creating Information Technology
Based on Laws for Software Evolvability

Prof. dr. Herwig Mannaert

Prof. dr. Jan Verelst

The Dream: Doug Mc Ilroy

1

“expect families of routines to be constructed on rational
principles so that families fit together as building blocks”

uit: McIlroy, Mass Produced Software Components,
1968 NATO Conference on Software Engineering, Garmisch, Germany.



2

The Reality: Manny Lehman

The Law of Increasing Complexity

Manny Lehman

2

Manny Lehman

“As an evolving program is continually changed, its complexity,
reflecting deteriorating structure, increases unless work is done

to maintain or reduce it.”

Proceedings of the IEEE, vol. 68, nr. 9, september 1980, pp. 1068.

Normalized Systems Principles

• Identifying Combinatorial Effects

- Separation of Concerns
• Theorem 1: “An action entity can only contain a single task.”

- Data Version Transparency
• Theorem 2: “Data entities that are received as input or produced

as output by action entities, need to exhibit version

3

as output by action entities, need to exhibit version
transparency.”

- Action Version Transparency
• Theorem 3: “Action entities that are called by other action

entities, need to exhibit version transparency.”

- Separation of States
• Theorem 4: “The calling of an action entity by another action

entity needs to exhibit state keeping.”



3

Separation of Concerns

• An action entity can only contain a single task

• Proof (RaA):

- Action entities Ei combine A with version Bi

- Additional mandatory version of A (change 4)

4

- Additional mandatory version of A (change 4)

- Number impacts Ei unbounded (assumption 2)

• Manifestations:

- Multi-tier architectures

- External workflow systems

- Separating cross-cutting concerns

- Use of messaging, service, integration bus

SoC: Multiple Version Task

A

B1

A

B2

A

B3

A

B4

A A A A

5



4

SoC: Non-Encapsulated Task

A B C D

6

Data Version Transparency

• Data entities received/produced by action
entities need to exhibit version transparency

• Proof (RaA):

- Action entities Ei receive D

7

- Action entities Ei receive D

- Additional attribute in D (change 2)

- Number impacts Ei unbounded (assumption 2)

• Implementations:

- XML / Web Services at run-time

- OO / JavaBeans at compile-time

- Tag-Value pairs in legacy systems



5

DvT: Multiple Version Data

A B C D

8

Action Version Transparency

• Action entities called by other action entities
need to exhibit version transparency

• Proof (RaA):

- Action entities Ei call A

9

- Action entities Ei call A

- Additional version of A (change 4)

- Number impacts Ei unbounded (assumption 3)

• Implementations:

- OO facade patterns

- Procedural wrapper functions



6

Separation of States

• The calling of an action entity by another
action entity needs to exhibit state keeping

• Proof (RaA):
- Action entities Ei calling action entity A

- Additional version of A new state (change 4)

10

i

- Additional version of A new state (change 4)

- Number impacts Ei unbounded (assumption 3)

• Implications:
- Stateful workflow systems

- State related to instance of data entity

- No stateless synchronous pipelines allowed

• Manifestation: async communication systems

SoS: Non-Encapsulated State

A B C D

11

X



7

Normalized Systems Elements

• The solution =

- Structure through Encapsulations, called Elements
• A Java class is encapsulated in 8-10 other classes, dealing with

cross-cutting concerns, in order to deal with the anticipated
changes without CE, and fully separating the element from all
other elements.

12

other elements.

• Every element is described by a design pattern. Every element
builds on other elements.

• Every design pattern is executable, and can be expanded
automatically.

- Realizing the core functionality of Information Systems

• Application = n instantiations of Elements

Normalized Systems Elements

Remote Persist

13

Encaps

Local Transac

Service



8

Building NS Applications

Requirements
Con-

nector
Work-
flow TriggerActionData Elements

14

NS Application
=

n Instances
of Elements

NS Elements

• Characteristics
- Ex ante, proven evolvability

• Wrt anticipated changes
• Changes in packages, frameworks, programming languages...

- True Black Box, as the inside of an instantiation of
the element is ‘known’, and therefore does not

15

the element is ‘known’, and therefore does not
require black box inspection by the user.

• McIlroy: “safely to regard components as black boxes”

- True Black Box realizes Reuse
• McIlroy: “families fit together as building blocks”
• One cannot reasonably expect that modules can be systematically reused,

when there are no generally-accepted principles for dealing with coupling
and hundreds of developers are concurrently working on the same
information system…

- True Black Box controls Lehman
• Any degradation does not affect other elements



9

The Cost of Modularity

Complexity

NS
Traditional

16

Modularity

NS
Traditional
Development

Other Issues: Performance

• Stability theorems

- No stateless sync
pipelines are allowed

- Calling an action needs
to exhibit state keeping

• OLTP commandments

- Do not lock a system
resource too long

- Use transactions to
clean up your mess

17

to exhibit state keeping

- We do not have a
theorem for this

- No stateless sync
pipelines are allowed

- An action can only
contain a single task

clean up your mess

- Reuse resources across
clients

- Come in, do your work,
and get out

- Deal with large number
of small things



10

Other Issues: Testing / Docs

• In order to obtain stable building blocks, we propose
the encapsulation of software entities into higher-level
stable elements according to structures implied by the
stability theorems.

• This structured composition of entities into the higher-

18

• This structured composition of entities into the higher-
level elements can be described as “design patterns”,
that are detailed, unambiguous, and parametrized.
Therefore:

- Both unit and integration testing of such a stable
building block should become a trivial thing.

- The complete and unambiguous documentation of the
building block should consist of the documentation of
this design pattern and the expansion parameters.

Conclusions

• Normalized Systems

- NS Principles
• identify Combinatorial Effects, which are responsible for the

evolvability problems described by Lehman

- NS Elements

19

- NS Elements
• realize the core functionality of information systems without

Combinatorial Effects

- =High-quality IT
• advanced modular structures of proven evolvability that

realize McIlroy and withstand Lehman !

• New levels of reuse

• Independent of programming language, packages, … !



11

Thank you for your attention !

20

Thank you for your attention !

For more information:
{herwig.mannaert, jan.verelst}@ua.ac.be


